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1 Abstract
UV irradiance and actinic flux are calcu−
lated using two different approaches; (A)
a well established TOMS cloud reflectiv−
ity method [1]; and (B) a new method,
based on total ozone from TOMS and
cloud parameters from ISCCP. Both prod−
ucts show good agreement between each
other, and with ground−based measure−
ments.



2 Methods
A. TOMS−based method. Surface radiation
is calculated by scaling the cloudless sky
value with a wavelength−independent factor
which is derived from the TOMS reflectivity
according to [1], [3]:

B. ISCCP−based method. Radiation is cal−
culated using cloud fraction and cloud optical
depth from the ISCCP D1 data set [5]. Bro−
ken clouds are considered with the independent
pixel approximation [4], [3]:

where c is the cloud fraction, and and
are the irradiances for cloudless and

totally cloud−covered sky, calculated using the
TUV radiative transfer model [2]. The snow
cover information of the ISCCP D1 data is used
to estimate the correct surface albedo. In both
methods, cloudless sky irradiance is calculated
using TOMS total ozone.



3 Results
Fig. 1 shows good agreement in the erythe−
mal irradiance calculated using both methods.
While the TOMS−based method provides a
quick way to calculate surface irradiance and
even actinic flux or j−values (Fig. 2) [3], the
ISCCP−based method might be of advantage
for certain applications because: (1) some ex−
tra uncertainty is introduced when using TOMS
reflectivity to calculate the actinic flux [3];
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Figure 1: TOMS− and ISCCP−based noontime
erythemal irradiance.
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Figure 2: TOMS− and ISCCP−based noontime
photolysis frequency .

(2) the ISCCP data distinguish between clouds
and surface albedo; (3) the ISCCP data include
information about the vertical layering of the
clouds; and (4) the time resolution of the IS−
CCP data is higher.



The ISCCP D1 data are available in
steps of 3 hours, thus allowing the
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Figure 3: Diurnal
variation.

calculation of diur−
nal variations. Here,
nine data points,
equally spaced in
time and centered
around local noon,
are sufficient to
calculate daily doses
with an accuracy
of 1% compared to
a calculation with
high time resolution.
Fig. 3 shows a
pronounced diurnal
variation of cloudi−
ness, which can only
be obtained from the
ISCCP data.
A comparison of the
TOMS−based data
with ground−based
measurements from the World Ozone and UV
data center (WOUDC) shows good agreement
(Fig. 4). A systematic difference of 5−10% is
expected because most of the measured data
were not corrected for the cosine error of the
entrance optics.
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Figure 4: Model calculations and measure−
ments of averaged daily erythemal irradiation.
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